Overexpression of Banana ATG8f Modulates Drought Stress Resistance in Arabidopsis

Biomolecules. 2019 Dec 2;9(12):814. doi: 10.3390/biom9120814.

Abstract

Autophagy is essential for plant growth, development, and stress resistance. However, the involvement of banana autophagy-related genes in drought stress response and the underlying mechanism remain elusive. In this study, we found that the transcripts of 10 banana ATG8s responded to drought stress in different ways, and MaATG8f with the highest transcript in response to drought stress among them was chosen for functional analysis. Overexpression of MaATG8f improved drought stress resistance in  Arabidopsis,with lower malonaldehyde level and higher level of assimilation rate. On the one hand, overexpression of MaATG8f activated the activities of superoxide dismutase, catalase, and peroxidase under drought stress conditions, so as to regulate reactive oxygen species accumulation. On the other hand, MaATG8f-overexpressing lines exhibited higher endogenous abscisic acid (ABA) level and more sensitivity to abscisic acid. Notably, the autophagosomes as visualized by CaMV35S::GFP-MaATG8f was activated after ABA treatment. Taken together, overexpression of MaATG8f positively regulated plant drought stress resistance through modulating reactive oxygen species metabolism, abscisic acid biosynthesis, and autophagic activity.

Keywords: MaATG8f; abscisic acid; autophagy; banana; drought; reactive oxygen species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological*
  • Arabidopsis / genetics
  • Arabidopsis / growth & development*
  • Arabidopsis / metabolism
  • Autophagy-Related Proteins / genetics*
  • Catalase / metabolism
  • Droughts
  • Gene Expression Regulation, Plant
  • Malondialdehyde / metabolism
  • Musa / genetics*
  • Peroxidase / metabolism
  • Plant Proteins / genetics
  • Plants, Genetically Modified / growth & development
  • Plants, Genetically Modified / metabolism
  • Reactive Oxygen Species / metabolism
  • Superoxide Dismutase / metabolism
  • Up-Regulation

Substances

  • Autophagy-Related Proteins
  • Plant Proteins
  • Reactive Oxygen Species
  • Malondialdehyde
  • Catalase
  • Peroxidase
  • Superoxide Dismutase