Cascade dam impoundments restrain the trophic transfer efficiencies in benthic microbial food web

Water Res. 2020 Mar 1:170:115351. doi: 10.1016/j.watres.2019.115351. Epub 2019 Nov 28.

Abstract

Determination of the effects of cascade dams on benthic microbial ecosystem is essential for dam regulation and ecological function protection. However, no comprehensive investigation has yet shown the ecosystem-level responses of microbiota to dam impoundments. This study conducted DNA metabarcoding and microbial food web analysis for multiple species and their interrelationships along a cascade dam-affected river. The composition, distribution and diversity of bacteria, protozoans and metazoans were obviously different between river and reservoirs, mainly controlled by hydrological (P < 0.01) and nutrient parameters (P < 0.05). Those three groups make up a co-occurrence network, with most edges direct from higher to lower trophic levels or vice versa and more than 50% keystones participate in the food web, indicating the significant role of predator-prey relationships. Based on the microbial food web analysis, the predator biomass, especially at higher trophic levels, decreased by about 10% from the riverine to the lacustrine system. The structural equation model illustrates that both bottom-up forces (environmental factors particularly velocity and nutrient concentrations) and top-down forces (higher trophic levels) critically control microbial food web patterns (P < 0.05). As a result of dam impoundments, the lower velocity in the reservoirs has direct negative effects on trophic transfer efficiencies that may be further magnified by nutrient accumulation, probably leading to an increase of eutrophication and posing a risk to water quality. The results suggest the potential ecological risk in the reservoirs and highlight the need to consider from the perspective of ecosystem during the operation of cascade dams.

Keywords: Cascade dams; DNA metabarcoding; Ecological impacts; Microbial food web; Multi-species.

MeSH terms

  • Biomass
  • Ecosystem*
  • Food Chain*
  • Hydrology
  • Rivers