Quantification of nitrate fate in a karst conduit using stable isotopes and numerical modeling

Water Res. 2020 Mar 1:170:115348. doi: 10.1016/j.watres.2019.115348. Epub 2019 Nov 29.

Abstract

Nitrate (NO3⁻) fate estimates in turbulent karst pathways are lacking due, in part, to the difficulty of accessing remote subsurface environments. To address this knowledge and methodological gap, we collected NO3⁻, δ15NNO3, and δ18ONO3 data for 65 consecutive days, during a low-flow period, from within a phreatic conduit and its terminal end-point, a spring used for drinking water. To simulate nitrogen (N) fate within the karst conduit, the authors developed a numerical model of NO3⁻ isotope dynamics. During low-flow, data show an increase in NO3⁻ (from 1.78 to 1.87 mg N L-1; p < 10-4) coincident with a decrease in δ15NNO3 (from 7.7 to 6.8‰; p < 10-3) as material flows from within the conduit to the spring. Modeling results indicate that the nitrification of isotopically-lighter ammonium (δ15NNH4) acts as a mechanism for an increase in NO3⁻ that coincides with a decrease in δ15NNO3. Further, numerical modeling assists with quantifying isotopic overprinting of nitrification on denitrification (i.e., coincident NO3⁻ production during removal) by constraining the rates of the two processes. Modeled denitrification fluxes within the karst conduit (67.0 ± 19.0 mg N m-2 d-1) are an order-of-magnitude greater than laminar ground water pathways (1-10 mg N m-2 d-1) and an order-of-magnitude less than surface water systems (100-1000 mg N m-2 d-1). In this way, karst conduits are a unique interface of the processes and gradients that control both surface and ground water end-points. This study shows the efficacy of ambient N stable isotope data to reflect N transformations in subsurface karst and highlights the usefulness of stable isotopes to assist with water quality numerical modeling in karst. Lastly, we provide a rare, if not unique, estimate of N fate in subsurface conduits and provide a counterpoint to the paradigm that karst conduits are conservative source-to-sink conveyors.

Keywords: Biogeochemistry; Denitrification; Karst; Nutrient cycling; Sediment; Water quality.

MeSH terms

  • Denitrification
  • Environmental Monitoring*
  • Nitrates
  • Nitrogen
  • Nitrogen Isotopes
  • Water Pollutants, Chemical*

Substances

  • Nitrates
  • Nitrogen Isotopes
  • Water Pollutants, Chemical
  • Nitrogen