Enhancement of Many-Body Quantum Interference in Chaotic Bosonic Systems: The Role of Symmetry and Dynamics

Phys Rev Lett. 2019 Nov 22;123(21):215302. doi: 10.1103/PhysRevLett.123.215302.

Abstract

Although highly successful, the truncated Wigner approximation (TWA) leaves out many-body quantum interference between mean-field Gross-Pitaevskii solutions as well as other quantum effects, and is therefore essentially classical. Turned around, if a system's quantum properties deviate from TWA, they must be exhibiting some quantum phenomenon, such as localization, diffraction, or tunneling. Here, we examine a particular interference effect arising from discrete symmetries, which can significantly enhance quantum observables with respect to the TWA prediction, and derive an augmented TWA in order to incorporate them. Using the Bose-Hubbard model for illustration, we further show strong evidence for the presence of dynamical localization due to remaining differences between the TWA predictions and quantum results.