Clinical Significance And Integrative Analysis Of Kinesin Family Member 18B In Lung Adenocarcinoma

Onco Targets Ther. 2019 Nov 5:12:9249-9264. doi: 10.2147/OTT.S227438. eCollection 2019.

Abstract

Background: Kinesin family member 18B (KIF18B) is a member of the kinesin-8 superfamily, and functions as an oncogene in human cancers. However, its expression profile and role in lung adenocarcinoma (LUAD) remain unclear.

Materials and methods: We examined the expression profile of KIF18B using quantitative real-time reverse transcription polymerase chain reaction and immunohistochemistry in fresh clinical samples. Using data downloaded from the Cancer Genome Atlas database and Gene Expression Omnibus, we explored the clinical significance of KIF18B, potential mechanisms of its dysregulation and its underlying biological function in LUAD.

Results: KIF18B was significantly over-expressed in LUAD tissues relative to normal tissues. High KIF18B expression was associated with smoking history, positive nodal invasion, advanced clinical stage, death status and poorer prognosis. Cox regression analyses revealed that KIF18B overexpression was an independent prognostic biomarker for poor overall survival (OS) and recurrence-free survival in LUAD. In addition, KIF18B mutation was observed in 2.2% of LUAD cases. DNA copy number variation was correlated with upregulated expression of KIF18B in LUAD tissues and cell lines. The methylation level of some KIF18B DNA CpG sites was negatively associated with its mRNA expression. KIF18B was predictively targeted by miR-125a-5p, which was downregulated in LUAD tissues, inversely correlated with KIF18B mRNA expression and significantly associated with poor OS. Furthermore, gene set enrichment analysis revealed that genes positively co-expressed with KIF18B were mainly enriched in cell cycle signaling pathways.

Conclusion: Our results indicate that KIF18B is a promising prognostic biomarker for LUAD. DNA amplification, hypomethylation as well as miR-125a-5p downregulation may be involved in the mechanism of KIF18B dysregulation in LUAD. KIF18B might function as a novel oncogene through cell cycle regulation pathways in LUAD.

Keywords: bioinformatic analysis; kinesin; lung adenocarcinoma; miR-125a-5p; prognosis.