Effects of the γ″-Ni3Nb Phase on Fatigue Behavior of Nickel-Based 718 Superalloys with Different Heat Treatments

Materials (Basel). 2019 Nov 30;12(23):3979. doi: 10.3390/ma12233979.

Abstract

The effects of the γ″-Ni3Nb phase on fatigue behavior of nickel-based 718 superalloys with standard heat treatment, hot isostatic pressing + solution treatment + aging, and hot isostatic pressing + direct aging were investigated by scanning electron microscope, transmission electron microscopy, and fatigue experiments. The standard heat treatment, hot isostatic pressing + solution treatment + aging, and hot isostatic pressing + direct aging resulted in the formation of more and smaller γ″ phases in the matrix in the nickel-based 718 superalloys. However, the grain boundaries of the hot isostatic pressing + direct aging sample showed many relatively coarse disk-like γ″ phases with major axes of ~80 nm and minor axes of ~40 nm. The hot isostatic pressing + direct aging sample with a stress amplitude of 380 MPa showed the longest high cycle fatigue life of 5.16 × 105 cycles. Laves phases and carbide inclusions were observed in the crack initiation zone, and the cracks propagated along the acicular δ phases in the nickel-based 718 superalloys. The precipitation of fine γ″ phases in the matrix and relatively coarse γ″ phases in the grain boundaries of the hot isostatic pressing + direct aging sample can hinder the movement of dislocation.

Keywords: fatigue behavior; heat treatment; hot isostatic pressing; nickel-based 718 superalloy; γ″-Ni3Nb.