Underwater Image Transmission Using Spatial Modulation Unequal Error Protection for Internet of Underwater Things

Sensors (Basel). 2019 Nov 29;19(23):5271. doi: 10.3390/s19235271.

Abstract

A spatial modulation (SM) scheme has been developed as a hopeful candidate for spectral and energy-efficient wireless communication systems, as it provides a great judgment for the system performance, data transmission rate, receiver complexity, and energy/spectrum efficiency. In SM, the data is conveyed by both habitual M-ary signal constellations and the transmit antennas indices. Therefore, the system data rate improvement due to the side information bits transmitted, encapsulated in indices of the transmit antennas, improves the SM transmission efficiency compared to the different MIMO players. The information bits transmitted over the antenna index and data symbol constellation using M-ary signal performance have different levels of bit error rate (BER) performance. This paper proposes unequal error protection (UEP) scheme for image transmission over the Internet of Underwater Things (IoUTs) using SM. The Set Partitioning in Hierarchical Trees (SPIHT) coders encode the underwater image and classify the encoded bits in two categories: critical and uncritical bits. The critical bits are transmitted over the SM index bits and have a low BER while the uncritical bits are transmitted over high order M-ary signal constellation to resolve the underwater acoustic channel bandwidth limitation problem. The proposed SM-UEP technique has been developed carefully with enough justification and evaluation over the measured underwater acoustic channel and the simulated channel. The simulation results show that the proposed SM-UEP can increase the average peak signal-to-noise ratio (PSNR) of the reconstructed received image considerably, and significantly.

Keywords: IoUTs; SPIHT coder; image processing; spatial modulation; underwater communication; unequal error protection.