Curcumin enhances radiosensitization of nasopharyngeal carcinoma by regulating circRNA network

Mol Carcinog. 2020 Feb;59(2):202-214. doi: 10.1002/mc.23143. Epub 2019 Dec 2.

Abstract

Circular RNAs (circRNAs) are involved in the regulation of gene expression in different physiological and pathological processes. These macromolecules can act as microRNA (miRNA) sponges and play an important role as gene regulators throughout the circRNA-miRNA pathway. In this study, we established a radioresistance model with the nasopharyngeal carcinoma cell line CNE-2, and then analyzed the differences in the circRNAs between radioresistant and normal nasopharyngeal carcinoma cell lines using a high-throughput microarray. Tested circRNAs included 1042 upregulated and 1558 downregulated circRNAs. Relevant signaling pathways associated with the circRNAs and their target miRNAs were analyzed using bioinformatics analysis to determine the radioresistance of the differentially expressed circRNAs. Curcumin was used to treat irradiated cell lines, and changes in the circRNA before and after curcumin treatment were analyzed to investigate the radiosensitization effects of curcumin. The results showed that curcumin could regulate the circRNA-miRNA-messenger RNA network and inhibit the epidermal growth factor receptor (EGFR), signal transducers and activators of transcription 3 (STAT3), and growth factor receptor-bound protein 2 (GRB2) to achieve radiosensitization. Thus, circRNA acted as a miRNA sponge and regulated the expression of miRNA, thereby affecting EGFR, STAT3, and GRB2 expression and radiosensitization.

Keywords: EGFR; circRNA; curcumin; miRNA; radiosensitization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Curcumin / pharmacology*
  • Gene Expression Profiling / methods
  • Gene Expression Regulation, Neoplastic / drug effects
  • Gene Expression Regulation, Neoplastic / genetics*
  • Gene Expression Regulation, Neoplastic / radiation effects
  • Gene Regulatory Networks / drug effects
  • Gene Regulatory Networks / genetics
  • Gene Regulatory Networks / radiation effects
  • Humans
  • Nasopharyngeal Carcinoma / genetics*
  • Nasopharyngeal Carcinoma / pathology
  • Nasopharyngeal Neoplasms / genetics*
  • Nasopharyngeal Neoplasms / pathology
  • Oligonucleotide Array Sequence Analysis / methods
  • RNA, Circular / genetics*
  • Radiation Tolerance / drug effects*
  • Radiation Tolerance / genetics
  • Signal Transduction / drug effects
  • Signal Transduction / genetics
  • Signal Transduction / radiation effects

Substances

  • RNA, Circular
  • Curcumin