Ultrasonic Backscatter Difference Measurement of Bone Health in Preterm and Term Newborns

Ultrasound Med Biol. 2020 Feb;46(2):305-314. doi: 10.1016/j.ultrasmedbio.2019.10.021. Epub 2019 Nov 29.

Abstract

Metabolic bone disease of prematurity remains a significant problem for preterm infants. Quantitative ultrasound (QUS) has potential as a non-invasive tool for assessing bone health of newborns. The aim of this study was to assess bone health in preterm and term newborns using ultrasonic backscatter difference measurement. This study analyzed a total of 493 neonates, including 239 full-term infants (gestational age [GA] >37 wk), 201 preterm I infants (GA: 32-37 wk) and 53 extreme preterm II infants (GA <32 wk). Ultrasonic backscatter measurements were performed on the calcaneus of infants at birth, and the normalized mean of the backscatter difference spectrum (nMBD) was calculated as an ultrasonic index of neonatal bone status. Simple and multiple linear regressions were performed to determine the association of ultrasonic nMBD with GA, anthropometric characteristics and biochemical markers. Statistically significant differences in GA, anthropometric characteristics (birth weight, birth length [BL], birth head circumference and body mass index [BMI]) and biochemical markers (alkaline phosphatase, serum calcium and serum phosphate) were observed among preterm and term infants. The nMBD for term infants (median = 3.72 dB/μs, interquartile range [IR] = 1.95 dB/μs) was significantly higher than that for preterm I infants (median = 1.95 dB/μs, IR = 3.12 dB/μs), which was, in turn, significantly higher than that for preterm II infants (median = 0.19 dB/μs, IR = 3.50 dB/μs). The nMBD yielded moderate correlations (ρ = 0.57-0.62, p < 0.001) with GA and anthropometric characteristics and weak correlations (|ρ| = 0.08-0.21, p < 0.001 or not significant) with biochemical markers. Multivariate regressions revealed that only BL (p = 0.002) and BMI (p = 0.032) yielded significantly independent contributions to the nMBD measurement, and combinations of BL and BMI could explain up to 42% of the variation of nMBD in newborn infants. This study found that ultrasonic backscatter difference measurement might be helpful in bone health evaluation in preterm and term newborns. The utility of ultrasonic backscatter measurement in diagnosis of metabolic bone disease in infants should be investigated further.

Keywords: Bone health; Metabolic bone disease; Preterm infants; Quantitative ultrasound; Ultrasonic backscatter.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bone Density
  • Bone and Bones / anatomy & histology*
  • Bone and Bones / diagnostic imaging*
  • Female
  • Gestational Age
  • Humans
  • Infant, Newborn
  • Infant, Premature
  • Male
  • Term Birth
  • Ultrasonography / methods*