Melatonin ingestion after exhaustive late-evening exercise attenuate muscle damage, oxidative stress, and inflammation during intense short term effort in the following day in teenage athletes

Chronobiol Int. 2020 Feb;37(2):236-247. doi: 10.1080/07420528.2019.1692348. Epub 2019 Dec 2.

Abstract

The present study aimed to investigate whether nocturnal melatonin (MEL) ingestion has beneficial effects against exercise-induced oxidative stress and muscle damage in young athletes. Fourteen healthy-trained teenagers performed two-test sessions separated by at least, 1 week. During each session, participants completed the Running-Based Anaerobic Sprint Test (RAST) at 20:00 h. Then, they ingested a single 10-mg tablet of MEL or Placebo (PLA) in a double-blind randomized order at 22:00 h. The following morning (i.e., 07:30 h), participants performed the same test as the previous night. Blood samples were taken before and after exercise. MEL intake increased the peak power (Ppeak) (p < .01), mean power (Pmean) (p < .001) and decreased the total time (TT) (p < .001) and the fatigue index (FI) (p < .05). Furthermore, MEL ingestion attenuated the hematologic parameters before and after exercise (White Blood Cells (WBC: p < .001 and p < .001, respectively); Neutrophiles (NE: p < .001 and p < .001, respectively); Lymphocytes (LY: p < .001 and p < .001, respectively)) and the ultra-sensitive C-reactive protein (us-CRP: p < .001 and p < .001; respectively) compared to PLA. Also, MEL reduced muscle and hepatic damage enzymes before and after exercise (creatine kinase (CK: p < .001 and p < .001; respectively), lactate dehydrogenase (LDH: p < .05 and p < .01; respectively), aspartate aminotransferase (ASAT: p < .01 and p < .001; respectively)), Malondialdehyde (MDA: p < .001 and p < .001; respectively) and Homocysteine (Hcy: p < .001 and p < .001; respectively)) from placebo. Plasma lactate [La] and glucose (GL) remained unchangeable during the two conditions. In summary, acute MEL ingestion after strenuous late-evening exercise attenuated transient leucocytosis and protected against lipid peroxidation and muscle damage induced by strenuous exercise the following morning in healthy male teenage athletes.

Keywords: Melatonin; evening exercise; hematology; lipid peroxidation.

Publication types

  • Randomized Controlled Trial

MeSH terms

  • Adolescent
  • Athletes
  • Circadian Rhythm
  • Double-Blind Method
  • Eating
  • Humans
  • Inflammation / metabolism
  • Male
  • Melatonin* / metabolism
  • Muscle, Skeletal / metabolism
  • Muscles
  • Oxidative Stress

Substances

  • Melatonin