Temperature tolerance and oxygen consumption of two South American tetras, Paracheirodon innessi and Hyphessobrycon herbertaxelrodi

J Therm Biol. 2019 Dec:86:102434. doi: 10.1016/j.jtherbio.2019.102434. Epub 2019 Oct 10.

Abstract

Temperature is a primary factor affecting species' ability to thrive in a particular ecological niche, but thermal conditions have changed dramatically in recent decades. Fishes shift their thermal tolerance range with a maximum and minimum temperature correlated to their recent thermal acclimation history, and species can show a reduced temperature quotient (Q10) following chronic thermal acclimation. Neon tetra (Paracheirodon innesi) and Black Neon tetra (Hyphessobrycon herbertaxelrodi) are popular hobbyist aquarium fishes, and both species are examples of freshwater teleosts native to South American river systems that are potentially affected by changing thermal conditions. We acclimated these species to three different constant temperatures (26 °C, 29 °C, and 31 °C) for 15.4 ± 2.1 days, then measured acute critical thermal maxima (CTMax) and acute oxygen consumption rate (Ṁo2) at each acclimation temperature. We also estimated chronic lethal thermal maximum (CLT) for both species following a 2-week acclimation to 30.4 °C. Mean CTMax of both species were found to increase with acclimation temperature from 38.5 to 39.6 °C for Neon tetra and from 39.5 to 41.0 °C for Black Neon tetra, gaining 0.24 (Neon tetra) or 0.29 °C (Black Neon tetra) of tolerance per 1 °C of acclimation. However, Black Neon tetra demonstrated consistently higher CTMax (1.0-1.4 °C). CLT was lower for Neon tetra (33.5 °C), compared to Black Neon tetra (35.9 °C). Mean Ṁo2 were statistically similar across acclimation temperatures within species; Q10 between 26-31 °C were 1.92 and 1.22 for Neon and Black Neon tetra, respectively. Neon and Black Neon tetras physiologically acclimated to changing thermal demands, and although they demonstrate robust CTMax responses, CLT responses indicated both species are unable to survive temperatures 4-5 °C above current average natural values. The demonstrated metabolic plasticity and CTMax values provide a moderate cushion for both species to combat changing temperatures due to climate change, but CLT values suggest vulnerability to projected climate trends.

Keywords: Acclimation; Climate change; Critical thermal tolerance; Fish; Metabolism; South America.

Publication types

  • Comparative Study

MeSH terms

  • Acclimatization / physiology*
  • Animals
  • Characidae / physiology*
  • Climate Change
  • Oxygen Consumption*
  • Temperature