Voltage Sensor Movements during Hyperpolarization in the HCN Channel

Cell. 2019 Dec 12;179(7):1582-1589.e7. doi: 10.1016/j.cell.2019.11.006. Epub 2019 Nov 28.

Abstract

The hyperpolarization-activated cyclic nucleotide-gated (HCN) channel is a voltage-gated cation channel that mediates neuronal and cardiac pacemaker activity. The HCN channel exhibits reversed voltage dependence, meaning it closes with depolarization and opens with hyperpolarization. Different from Na+, Ca2+, and Kv1-Kv7 channels, the HCN channel does not have domain-swapped voltage sensors. We introduced a reversible, metal-mediated cross bridge into the voltage sensors to create the chemical equivalent of a hyperpolarized conformation and determined the structure using cryoelectron microscopy (cryo-EM). Unlike the depolarized HCN channel, the S4 helix is displaced toward the cytoplasm by two helical turns. Near the cytoplasm, the S4 helix breaks into two helices, one running parallel to the membrane surface, analogous to the S4-S5 linker of domain-swapped voltage-gated channels. These findings suggest a basis for allosteric communication between voltage sensors and the gate in this kind of channel. They also imply that voltage sensor movements are not the same in all voltage-gated channels.

Keywords: HCN channel; cryo-EM; electromechanical coupling; gating mechaniasm; hyperpolarization-activated; ion channel structure; pacemaker; voltage gating; voltage sensing; voltage-activated.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CHO Cells
  • Cricetinae
  • Cricetulus
  • HEK293 Cells
  • Humans
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels / chemistry*
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels / metabolism
  • Ion Channel Gating*
  • Membrane Potentials
  • Protein Conformation, alpha-Helical
  • Sf9 Cells
  • Spodoptera

Substances

  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels