Toward Personalized Medicine Implementation: Survey of Military Medicine Providers in the Area of Pharmacogenomics

Mil Med. 2020 Mar 2;185(3-4):336-340. doi: 10.1093/milmed/usz419.

Abstract

Introduction: Personalized medicine is the right treatment, to the right patient, at the right dose. Knowledge of genetic predisposition to variable metabolism and distribution of drugs within the body is currently available as pharmacogenomic testing and is one of the pillars of personalized medicine. Pharmacogenomic testing is growing. It has become part of guidelines for dosing on FDA labels and has been used by health care organizations to improve outcomes and reduce adverse events. Additionally, it has been FDA approved for direct-to-consumer purchase and has been cause of concern of patient self-dosing and medication changes. Presumably in the near future, pharmacogenomics will be impressed upon the military health system (MHS) provider from either a top-down, command requested, or from a bottom-up, patient requested, approach. To date, widespread implementation of pharmacogenomic testing does not seem to be established within the MHS. This survey sheds light on the knowledge, exposure, use, comfort, and interest among family medicine providers in the MHS. It compares similar results in other national and international surveys and compares results among a small subset of residents to staff.

Materials and methods: The questions were part of a larger survey conducted by the Clinical Investigations Committee of the Uniformed Services Academy of Family Physicians (USAFP) at the USAFP 2019 annual meeting. The study received approval from the Uniformed Services University Institutional Review Board. Submitted questions were written using multiple choice, fill-in, five-point Likert scale, and best answer. Direct results are reported as well as chi-square statistics for categorical data with statistical significance to attain a P-value of < 0.05.

Results: Among the 532 USAFP-registered conference attendees eligible to complete the survey, 387 attendees responded to the survey, for a response rate of 72.7%. Some results included were a knowledge question in which 37% of respondents answered correctly. Less than half of respondents agreed that they could define pharmacogenomics, and resident respondents were more likely to have received teaching in graduate medical education. Additionally, 12% of providers responded to being exposed to direct-to-consumer results, and 28% of those exposed were influenced to change medications, while 14% were influenced to change medications on multiple occasions. Chi-square comparisons resulted in statistically significant direct relationships to exposure to direct to consumer testing, previous training, and confidence of those that answered the knowledge question correctly.

Conclusions: This survey establishes a baseline for the possible needs associated with implementation of a pharmacogenomic program, and it argues an actionable level for the use of pharmacogenomics among the patient population within the MHS.

MeSH terms

  • Education, Medical, Graduate
  • Humans
  • Military Medicine*
  • Pharmacogenetics* / education
  • Precision Medicine
  • Surveys and Questionnaires