Feasibility of Using Seaweed (Gracilaria coronopifolia) Synbiotic as a Bioactive Material for Intestinal Health

Foods. 2019 Nov 27;8(12):623. doi: 10.3390/foods8120623.

Abstract

The market contains only limited health care products that combine prebiotics and probiotics. In this study, we developed a seaweed-based Gracilaria coronopifolia synbiotic and verified the efficacy by small intestinal cells (Caco-2). We also developed a functional material that promotes intestinal health and prevents intestinal inflammation. G. coronopifolia was used as a red seaweed prebiotic, and Bifidobacterium bifidums, B. longum subsp. infantis, B. longum subsp. longum, Lactobacillus acidophilus, and L. delbrueckii subsp. bulgaricus were mixed for the seaweed's synbiotics. G. coronopifolia synbiotics were nontoxic to Caco-2 cells, and the survival rate was 101% to 117% for a multiplicative effect on cell survival. After cells were induced by H2O2, the levels of reactive oxygen species (ROS) increased to 151.5%, but after G. coronopifolia synbiotic treatment, decreased to a range between 101.8% and 109.6%. After cells were induced by tumor necrosis factor α, the ROS levels increased to 124.5%, but decreased to 57.7% with G. coronopifolia symbiotic treatment. G. coronopifolia synbiotics could effectively inhibit the production of ROS intestinal cells under oxidative stress (induced by H2O2 and tumor necrosis factor α (TNF-α)), which can reduce the damage of cells under oxidative stress. Functioning of intestinal cells could be improved by inhibiting the production of inflammatory factor substances (interleukin 8) with G. coronopifolia symbiotic treatment. Also, gastrointestinal diseases may be retarded by a synbiotic developed from G. coronopifolia to promote intestinal health and prevent intestinal inflammation.

Keywords: Gracilaria coronopifolia; gastrointestinal functions; prebiotics; probiotics; seaweed; synbiotics.