Probiotic Effects of a Novel Strain, Acinetobacter KU011TH, on the Growth Performance, Immune Responses, and Resistance against Aeromonas hydrophila of Bighead Catfish (Clarias macrocephalus Günther, 1864)

Microorganisms. 2019 Nov 25;7(12):613. doi: 10.3390/microorganisms7120613.

Abstract

In the present study, the novel probiotic strain Acinetobacter KU011TH with an evident lack of pathogenicity in catfish was experimented. Three practical administration routes, namely, feed additive (FD), water-soluble additive (SOL), and a combination route (FD+SOL), were applied in two sizes of catfish. After 120 days of FD+SOL administration, catfish fingerlings (15 g) exhibited a significant improvement in all tested growth performance parameters. For 15- and 30-day applications at the juvenile stage (150 g), phagocytic activity, phagocytic index, lysozyme activity, respiratory burst activity, alternative complement pathway, and bactericidal activity were significantly increased. Furthermore, probiotic-administered bighead catfish exhibited an upregulated expression of several immune-related genes in tested organs. Significant colonization by Acinetobacter KU011TH in rearing water and on skin and gills was observed among experimental groups. Histological analysis clearly indicated enhanced physical characteristics of skin mucosal immunity in the treated groups. No histopathological changes in the gills, skin, intestine or liver were observed among the fish groups. Interestingly, after challenge with Aeromonas hydrophila, the survival rates of the treated groups were significantly higher than those of the controls. In conclusion, the novel probiont Acinetobacter KU011TH provides a potent strategy for improvement in growth and disease resistance, which is an important steppingstone for sustaining catfish aquaculture.

Keywords: Acinetobacter KU011TH; Aeromonas hydrophila; Clarias macrocephalus; growth performance; immune-related gene; innate immune responses; probiotics; skin physical barriers.