Suppression of murine osteoarthritis by 4-methylumbelliferone

J Orthop Res. 2020 May;38(5):1122-1131. doi: 10.1002/jor.24541. Epub 2019 Dec 8.

Abstract

Using in vitro models, we previously reported that 4-methylumbelliferone (4-MU) blocked many of the pro-catabolic features of activated chondrocytes. 4-MU also blocked safranin O loss from human cartilage explants exposed to interleukin 1β (IL1β) in vitro. However, the mechanism for this chondroprotective effect was independent of the action of 4-MU as a hyaluronan (HA) inhibitor. Interestingly, overexpression of HA synthase 2 (HAS2) also blocked the same pro-catabolic features of activated chondrocytes as 4-MU via a mechanism independent of extracellular HA accumulation. Data suggest that altering UDP-sugars may be behind these changes in chondrocyte metabolism. However, all of our previous experiments with 4-MU or HAS2 overexpression were performed in vitro. The purpose of this study was to confirm whether 4-MU was effective at limiting the effects of osteoarthritis (OA) on articular cartilage in vivo. The progression of OA was evaluated after destabilization of the medial meniscus (DMM) surgery on C57BL/6 mice in the presence or absence of 4-MU-containing chow. Mice fed 4-MU after DMM surgery exhibited significant suppression of OA starting from an early stage in vivo. Mice fed 4-MU exhibited lower OARSI scores after DMM; reduced osteophyte formation and reduced MMP3 and MMP13 immunostaining. 4-MU also exerted pronounced chondroprotective effects on murine joint cartilage exposed to IL1β in vitro and, blocked IL1β-enhanced lactate production in cartilage explants. Therefore, 4-MU is effective at significantly reducing the loss of proteoglycan and reducing MMP production both in vitro and in vivo as well as cartilage damage and osteophyte formation in vivo after DMM. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. 38:1122-1131, 2020.

Keywords: DMM; hyaluronan; matrix metalloproteinase; osteoarthritis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Arthritis, Experimental / drug therapy*
  • Drug Evaluation, Preclinical
  • Female
  • Hymecromone / therapeutic use*
  • Male
  • Mice, Inbred C57BL
  • Osteoarthritis / drug therapy*

Substances

  • Hymecromone