Hippocampal Lnx1-NMDAR multiprotein complex mediates initial social memory

Mol Psychiatry. 2021 Aug;26(8):3956-3969. doi: 10.1038/s41380-019-0606-y. Epub 2019 Nov 26.

Abstract

Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CA3 Region, Hippocampal / physiology*
  • Memory Disorders / genetics
  • Memory*
  • Mice
  • Receptors, N-Methyl-D-Aspartate* / genetics
  • Receptors, N-Methyl-D-Aspartate* / metabolism
  • Signal Transduction
  • Social Behavior*
  • Ubiquitin-Protein Ligases* / metabolism

Substances

  • NR2B NMDA receptor
  • Receptors, N-Methyl-D-Aspartate
  • Lnx1 protein, mouse
  • Ubiquitin-Protein Ligases