The Effect of Inner Friction on Concrete Fracture Behavior under Biaxial Compression: A 3D Mesostructure Study

Materials (Basel). 2019 Nov 24;12(23):3880. doi: 10.3390/ma12233880.

Abstract

The mechanical behavior of concrete under biaxial loading condition (especially biaxial compression) is one of the most important indexes to evaluate the quality of concrete. To study the mechanical behavior of concrete under biaxial compression at mesoscale, we adopted our recently developed 3D numerical model based on Voronoi tessellation and cohesive elements. A constitutive model considering the friction effect is used in the model to characterize the fracture behavior of all potential fracture surfaces inside the concrete. A series of numerical experiments with different biaxial compression stress ratios were carried out. It was found that with the increase of the biaxial compression ratio, the proportion of energy increment caused by friction stress increases. The effect of inner friction coefficient on the biaxial relative strength was also investigated, and this kind of study is hard to be carried out through laboratory experiments. The results show that the inner friction coefficient has a great influence on the biaxial relative strength of concrete, and there is a positive correlation between these two parameters. Based on the above rules, a conservative biaxial relative compression strength envelope is obtained by setting the inner friction coefficient as zero.

Keywords: biaxial compression; cohesive element; concrete; fracture; inner friction; mesostructure.