Performance Analysis of Addressing Mechanisms in Inter-Operable IoT Device with Low-Power Wake-Up Radio

Sensors (Basel). 2019 Nov 21;19(23):5106. doi: 10.3390/s19235106.

Abstract

Internet of Things (IoT) technology is rapidly expanding the use of its application, from individuals to industries. Owing to this, the number of IoT devices has been exponentially increasing. Considering the massive number of the devices, overall energy consumption is becoming more serious. From this point of view, attaching low-power wake-up radio (WUR) to the devices can be one of the candidate solutions to deal with this problem. With WUR, IoT devices can go to sleep until WUR receives a wake-up signal, which enables a significant reduction of its power consumption. Meanwhile, one concern for WUR operation is the addressing mechanism, since operational efficiency of the wake-up feature can significantly vary depending on the addressing mechanism. We therefore introduce addressing mechanisms for IoT devices equipped with WUR and analyze their performances, such as elapsed time to wake up, false positive probability and power/energy consumption, to provide appropriate addressing mechanisms over practical environments for IoT devices with WUR.

Keywords: IEEE 802.11ba; bloom filter; low-power wake-up radio; power saving.