Effect of Using Hybrid Polypropylene and Glass Fibre on the Mechanical Properties and Permeability of Concrete

Materials (Basel). 2019 Nov 18;12(22):3786. doi: 10.3390/ma12223786.

Abstract

A comprehensive program of experiments consisting of compression, uniaxial compression, direct shear, flexural as well as splitting tensile and air permeability tests were performed to analyse the effect of the level of fibre dosage and the water-cement ratio on the physical properties of hybrid fibre-reinforced concrete (HFRC). Two types of fibres were studied in terms of their effect on the properties of HFRC. The results indicated that the mechanical properties of concrete were significantly improved by increasing the fibre content. However, increasing the percentage fibre content past a certain peak performance limit (0.9% glass fibre (GF) and 0.45% polypropylene fibre (PPF)) led to a decrease in strength compared to reference mixes. Additionally, the incorporation of hybrid fibres yielded an increase in air permeability in the tested specimens. The results showed that the strength-related properties of HFRC were superior to the properties of single fibre-reinforced concrete.

Keywords: glass fibre; hybrid fibres; mechanical properties; permeability; polypropylene fibre.