The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System

Chem Rev. 2020 Jun 10;120(11):4660-4689. doi: 10.1021/acs.chemrev.9b00474. Epub 2019 Nov 19.

Abstract

The search for evidence of extraterrestrial life in our Solar System is currently guided by our understanding of terrestrial biology and its associated biosignatures. The observed homochirality in all life on Earth, that is, the predominance of "left-handed" or l-amino acids and "right-handed" or d-sugars, is a unique property of life that is crucial for molecular recognition, enzymatic function, information storage and structure and is thought to be a prerequisite for the origin or early evolution of life. Therefore, the detection of l- or d-enantiomeric excesses (ee) of chiral amino acids and sugars could be a powerful indicator for extant or extinct life on another world. However, studies of primitive meteorites have revealed they contain extraterrestrial amino acids and sugar acids (aldonic acids) with large enantiomeric excesses of the same chirality as terrestrial biology resulting from nonbiological processes, complicating the use of chiral asymmetry by itself as a definitive biosignature. Here we review our current knowledge of the distributions and enantiomeric and isotopic compositions of amino acids and polyols found in meteorites compared to terrestrial biology and propose a set of criteria for future life detection missions that can be used to help establish the origin of chiral asymmetry.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Amino Acids / chemistry*
  • Evolution, Chemical
  • Exobiology*
  • Polymers / chemistry*
  • Solar System*
  • Stereoisomerism

Substances

  • Amino Acids
  • Polymers
  • polyol