The Effects of Position on the Wear Debris Detection with Planar Inductor

Sensors (Basel). 2019 Nov 14;19(22):4961. doi: 10.3390/s19224961.

Abstract

Wear debris detection is an effective method to determine the running state of the machine. Recently, the planar inductor is commonly used to detect wear debris. The previous studies have found that the inductive signal would be varied while changing the position of wear debris pass through. However, the effect of position on the wear debris detection is not well understood. In this paper, a novel detection system in which the position of wear debris pass through could be adjusted precisely is designed. By changing the position in horizontal or vertical direction, the inductive signals of the wear debris were acquired. In the horizontal direction, the experimental results show that the amplitude of the inductive signal first increases and then decreases when the position changes from the center of the planar inductor to the outer. The maximum inductive signal appears when the wear debris pass through the edge of the inner coil, which is 20% higher than that for the center and much higher than that for the edge of outer coil. In the vertical direction, the signal decreases almost linearly when the position is away from the planar inductor. For every 0.1 mm step far away the planar inductor, the signal amplitude drops by approximately 10%. The variation trend of our experimental results is consistent with the numerical simulation results of magnetic intensity around the planar inductor.

Keywords: horizontal direction; planar inductor; vertical direction; wear debris.