Surface-2D/Bulk-3D Heterophased Perovskite Nanograins for Long-Term-Stable Light-Emitting Diodes

Adv Mater. 2020 Jan;32(1):e1905674. doi: 10.1002/adma.201905674. Epub 2019 Nov 18.

Abstract

Although metal halide perovskite (MHP) light-emitting diodes (LEDs) have demonstrated great potential in terms of electroluminescence efficiency, the operational stability of MHP LEDs currently remains the biggest bottleneck toward their practical usage. Well-confined excitons/charge carriers in a dielectric/quantum well based on conventional spatial or potential confinement approaches substantially enhance radiative recombination in MHPs, but an increased surface-to-volume ratio and multiphase interfaces likely result in a high degree of surface or interface defect states, which brings about a critical environmentally/operationally vulnerable point on LED stability. Here, an effective solution is suggested to mitigate such drawbacks using strategically designed surface-2D/bulk-3D heterophased MHP nanograins for long-term-stable LEDs. The 2D surface-functionalized MHP renders significantly reduced trap density, environmental stability, and an ion-migration-immune surface in addition to a fast radiative recombination owing to its spatially and potentially confined charge carriers, simultaneously. As a result, heterophased MHP LEDs show substantial improvement in operational lifetime (T50 : >200 h) compared to conventional pure 3D or quasi-2D counterparts (T50 : < 0.2 h) as well as electroluminescence efficiency (surface-2D/bulk-3D: ≈7.70 ph per el% and pure 3D: ≈0.46 ph per el%).

Keywords: light-emitting diodes; operational stability; perovskites.