A coaxial nanocable textured by a cerium oxide shell and carbon core for sensing nitric oxide

Mikrochim Acta. 2019 Nov 15;186(12):789. doi: 10.1007/s00604-019-3839-1.

Abstract

A corn-like CeO2/C coaxial cable textured by a cerium oxide shell and a carbon core was designed to sense NO. The carbon core possesses high electrical conductivity, and the CeO2 surface delivers excellent electrocatalytic activity. The sensor, typically operated at 0.8 V (vs. Ag/AgCl), exhibits a detection limit of 1.7 nM, which is 4-times lower than that of CeO2 nanotubes based one (at S/N = 3). It also displays wide linear response (up to 83 μM), a sensitivity of 0.81 μA μM-1 cm-2, and fast response (2 s). These values are highly competitive to that of a CeO2 tube (0.92 μA μM-1 cm-2 and 2 s). The sensor was used to quantify NO that is released by Aspergillus flavus. Graphical abstractSchematic representation of corn-like CeO2/C which can more sensitively and effectively detect NO released from A. flavus than when using CeO2 nanotubes, benefitting from its unique coaxial cable structure.

Keywords: Aspergillus flavus; Biosensor; Electrospinning; Voltammetric determination.

Publication types

  • Research Support, Non-U.S. Gov't