Large energy storage density performance of epitaxial BCT/BZT heterostructures via interface engineering

Sci Rep. 2019 Nov 14;9(1):16809. doi: 10.1038/s41598-019-53358-0.

Abstract

We grew lead-free BaZr0.2Ti0.8O3 (BZT)/Ba0.7Ca0.3TiO3 (BCT) epitaxial heterostructures and studied their structural, dielectric, ferroelectric and energy density characteristics. The BZT/BCT epitaxial heterostructures were grown on SrRuO3 (SRO) buffered SrTiO3 (STO) single crystal substrate by optimized pulsed laser deposition (PLD) technique. These high-quality nanostructures exhibit high dielectric permittivity (∼1300), slim electric field-dependent polarization (P-E) curve with high saturation polarization (∼100 µC/cm2) and low remnant polarization (∼20 µC/cm2) through interface engineering to develop new lead-free ferroelectric system for energy storage devices. We observe an ultrahigh discharge and charge energy densities of 42.10 and 97.13 J/cm3, respectively, with high efficiency, which might be highly promising for both high power and energy storage electrical devices.