Pressure-Driven Micro-Casting for Electrode Fabrication and Its Applications in Wear Grain Detections

Materials (Basel). 2019 Nov 10;12(22):3710. doi: 10.3390/ma12223710.

Abstract

The microelectrode is an essential and vital part in microsensors that are largely used in industrial, chemical, and biological applications. To obtain desired microelectrodes in great quality, it is also of great necessity and significance to develop a robust method to fabricate the microelectrode pattern. This work developed a four-terminal differential microelectrode that aims at recognizing microparticles in fluids. This microelectrode pair consisted of a high height-width ratio microelectrode array fabricated using a pre-designed microelectrode pattern (a micro-scale channel) and melted liquid metal. The surface treatment of microelectrodes was also investigated to reveal its impacts on the continuality of melting metal and the quality of the fabricated microelectrode patterns. To evaluate the performance of micro-casting fabricated electrodes, a microfluidic device was packaged using a microelectrode layer and a flow layer. Then impedance cytometer experiments were performed using sample fluids with polymer particles in two different sizes in diameter (5 μm and 10 μm). In addition, engine oil was tested on the microelectrodes as complex samples. The number of abrasive particles in the engine oil can be collected from the developed microfluidic device for further analysis.

Keywords: differential amplifier; impedance cytometer; melting metal; microfabrication; surface pretreatment; wear particle detection.