A High-Performance Solution-Processed Organic Photodetector for Near-Infrared Sensing

Adv Mater. 2020 Jan;32(1):e1906027. doi: 10.1002/adma.201906027. Epub 2019 Nov 12.

Abstract

Sensitive detection of near-infrared (NIR) light enables many important applications in both research and industry. Current organic photodetectors suffer from low NIR sensitivity typically due to early absorption cutoff, low responsivity, and/or large dark/noise current under bias. Herein, organic photodetectors based on a novel ultranarrow-bandgap nonfullerene acceptor, CO1-4Cl, are presented, showcasing a remarkable responsivity over 0.5 A W-1 in the NIR spectral region (920-960 nm), which is the highest among organic photodiodes. By effectively delaying the onset of the space charge limited current and suppressing the shunt leakage current, the optimized devices show a large specific detectivity around 1012 Jones for NIR spectral region up to 1010 nm, close to that of a commercial Si photodiode. The presented photodetectors can also be integrated in photoplethysmography for real-time heart-rate monitoring, suggesting its potential for practical applications.

Keywords: bulk heterojunctions; high responsivity; near-infrared; organic photodiodes; photodetectors.