Specific Heat Study of 1D and 2D Excitations in the Layered Frustrated Quantum Antiferromagnets Cs_{2}CuCl_{4-x}Br_{x}

Phys Rev Lett. 2019 Oct 4;123(14):147202. doi: 10.1103/PhysRevLett.123.147202.

Abstract

We report an experimental and theoretical study of the low-temperature specific heat C and magnetic susceptibility χ of the layered anisotropic triangular-lattice spin-1/2 Heisenberg antiferromagnets Cs_{2}CuCl_{4-x}Br_{x} with x=0, 1, 2, and 4. We find that the ratio J^{'}/J of the exchange couplings ranges from 0.32 to ≈0.78, implying a change (crossover or quantum phase transition) in the materials' magnetic properties from one-dimensional (1D) behavior for J^{'}/J<0.6 to two-dimensional (2D) behavior for J^{'}/J≈0.78. For J^{'}/J<0.6, realized for x=0, 1, and 4, we find a magnetic contribution to the low-temperature specific heat, C_{m}∝T, consistent with spinon excitations in 1D spin-1/2 Heisenberg antiferromagnets. Remarkably, for x=2, where J^{'}/J≈0.78 implies a 2D magnetic character, we also observe C_{m}∝T. This finding, which contrasts the prediction of C_{m}∝T^{2} made by standard spin-wave theories, shows that Fermi-like statistics also plays a significant role for the magnetic excitations in spin-1/2 frustrated 2D antiferromagnets.