Interface polarization model for a 2-dimensional electron gas at the BaSnO3/LaInO3 interface

Sci Rep. 2019 Nov 7;9(1):16202. doi: 10.1038/s41598-019-52772-8.

Abstract

In order to explain the experimental sheet carrier density n2D at the interface of BaSnO3/LaInO3, we consider a model that is based on the presence of interface polarization in LaInO3 which extends over 2 pseudocubic unit cells from the interface and eventually disappears in the next 2 unit cells. Considering such interface polarization in calculations based on 1D Poisson-Schrödinger equations, we consistently explain the dependence of the sheet carrier density of BaSnO3/LaInO3 heterinterfaces on the thickness of the LaInO3 layer and the La doping of the BaSnO3 layer. Our model is supported by a quantitative analysis of atomic position obtained from high resolution transmission electron microscopy which evidences suppression of the octahedral tilt and a vertical lattice expansion in LaInO3 over 2-3 pseudocubic unit cells at the coherently strained interface.