GSH-Activatable NIR Nanoplatform with Mitochondria Targeting for Enhancing Tumor-Specific Therapy

ACS Appl Mater Interfaces. 2019 Dec 4;11(48):44961-44969. doi: 10.1021/acsami.9b15996. Epub 2019 Nov 20.

Abstract

Developing smart photosensitizers that are sensitive to tumor-specific signals for minimal side effects and enhanced antitumor efficacy is a tremendous challenge for tumor phototherapies. Herein, we construct a nanoplatform with glutathione (GSH)-activatable and mitochondria-targeted pro-photosensitizer encapsulated by ultrasensitive pH-responsive polymer for achieving imaging-guided tumor-specific photodynamic therapy (PDT). The GSH-activatable pro-photosensitizer, di-cyanine (DCy7), has been synthesized where two cyanine moieties are covalently conjugated by a disulfide bond, and the hydrophobic DCy7 is further encapsulated with an amphiphilic pH-responsive diblock copolymer POEGMA-b-PDPA to form P@DCy7 nanoparticles. Upon endocytosis by cancer cells, P@DCy7 nanoparticles dissociate at endosome first and then DCy7 is released to cytoplasm and subsequently activated by the high concentration of GSH, finally targets mitochondria for organelle-targeted PDT. Moreover, intracellular antioxidant GSH is consumed during the activation procedure that is beneficial to efficient PDT. These P@DCy7 nanoparticles display selective phototoxicity against tumor cells (HepG2 or 4T1 cells) over normal cells (BEAS-2B cells) in vitro, and their GSH-activatable enhanced PDT efficacy is further confirmed in tumor-bearing mice. Thus, P@DCy7 nanoparticles allow for accurate and highly efficient PDT with minimal side effects, providing an attractive nanoplatform for organelle-targeted precise PDT.

Keywords: GSH activatable; cyanine; mitochondria targeting; near infrared; photodynamic therapy.

Publication types

  • Evaluation Study

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage
  • Antineoplastic Agents / chemistry
  • Cell Line, Tumor
  • Glutathione / metabolism*
  • Humans
  • Infrared Rays
  • Mice
  • Mice, Nude
  • Mitochondria / drug effects
  • Mitochondria / metabolism*
  • Nanoparticles / chemistry
  • Neoplasms / drug therapy*
  • Neoplasms / metabolism
  • Photochemotherapy / instrumentation
  • Photochemotherapy / methods*
  • Polyethylene Glycols / chemistry

Substances

  • Antineoplastic Agents
  • POEGMA
  • Polyethylene Glycols
  • Glutathione