Tailorable Metal-Ceramic (Cu-TiC0.5) Layered Electrode with High Mechanical Property and Conductivity

ACS Appl Mater Interfaces. 2019 Nov 27;11(47):44413-44420. doi: 10.1021/acsami.9b13219. Epub 2019 Nov 15.

Abstract

Two-dimensional materials have been extensively investigated in the fields of electrochemical sensors, field-effect transistors, and other electronic devices due to their large surface areas, high compatibility with device integration, and so on. Conventional electrodes, such as precious metal layers that are deposited on polymer or silicon wafers, have gradually revealed increasing difficulties in adapting to various device structures, especially for two-dimensional materials, which prefer high exposure of surface atoms. Here, we demonstrate a tailorable metal-ceramic (Cu-TiC0.5) layered structure as novel electrodes with high mechanical property and conductivity and fabricate a highly sensitive gas sensor with graphene lying on this proposed electrodes. The Cu-TiC0.5 layered structure exhibits remarkably high tensile yield strength and compressive yield strength, which increase 7 and 8 times than those of the pure copper, respectively. Meanwhile, excellent flexibility and conductivity could also be obtained with the further thinning of the Cu-TiC0.5 layered composite, which shows its potential applications in flexible electronics. Finally, we demonstrated that a graphene-based gas sensor fabricated on tailored metal-ceramic electrodes was ultrasensitive and robust, which benefits from the good thermal conductivity and peculiar gas channels etched on the surface of copper alloy electrodes.

Keywords: NO2 sensor; gas channels; graphene; high mechanical properties; layered electrode; metal−ceramic layered structure.