Aberrant Epigenomic Modulation of Glucocorticoid Receptor Gene (NR3C1) in Early Life Stress and Major Depressive Disorder Correlation: Systematic Review and Quantitative Evidence Synthesis

Int J Environ Res Public Health. 2019 Nov 4;16(21):4280. doi: 10.3390/ijerph16214280.

Abstract

Early life stress (ELS) induced by psychological trauma, child maltreatment, maternal separation, and domestic violence predisposes to psycho-behavioral pathologies during adulthood, namely major depressive disorder (MDD), anxiety, and bipolar affective disorder. While environmental data are available in illustrating this association, data remain to be established on the epigenomic underpinning of the nexus between ELS and MDD predisposition. Specifically, despite the observed aberrant epigenomic modulation of the NR3C1, a glucocorticoid receptor gene, in early social adversity and social threats in animal and human models, reliable scientific data for intervention mapping in reducing social adversity and improving human health is required. We sought to synthesize the findings of studies evaluating (a) epigenomic modulations, mainly DNA methylation resulting in MDD following ELS, (b) epigenomic modifications associated with ELS, and (c) epigenomic alterations associated with MDD. A systematic review and quantitative evidence synthesis (QES) were utilized with the random effect meta-analytic procedure. The search strategy involved both the PubMed and hand search of relevant references. Of the 1534 studies identified through electronic search, 592 studies were screened, 11 met the eligibility criteria for inclusion in the QES, and 5 examined ELS and MDD; 4 studies assessed epigenomic modulation and ELS, while 2 studies examined epigenomic modulations and MDD. The dense DNA methylation of the 1F exon of the NR3C1, implying the hypermethylated region of the glucocorticoid receptor gene, was observed in the nexus between ELS and MDD, common effect size (CES) = 14.96, 95%CI, 10.06-19.85. With respect to epigenomic modulation associated with child ELS, hypermethylation was observed, CES = 23.2%, 95%CI, 8.00-38.48. In addition, marginal epigenomic alteration was indicated in MDD, where hypermethylation was associated with increased risk of MDD, CES = 2.12%, 95%CI, -0.63-4.86. Substantial evidence supports the implication of NR3C1 and environmental interaction, mainly DNA methylation, in the predisposition to MDD following ELS. This QES further supports aberrant epigenomic modulation identified in ELS as well as major depressive episodes involving dysfunctional glucocorticoid-mediated negative feedback as a result of allostatic overload. These findings recommend prospective investigation of social adversity and its predisposition to the MDD epidemic via aberrant epigenomic modulation. Such data will facilitate early intervention mapping in reducing MDD in the United States population.

Keywords: DNA methylation (mDNA); aberrant epigenomic modulation; early life stress (ELS); glucocorticoid receptor gene (NR3C1); major depressive disorder (MDD).

Publication types

  • Systematic Review

MeSH terms

  • Animals
  • DNA Methylation
  • Depressive Disorder, Major / epidemiology
  • Depressive Disorder, Major / genetics
  • Depressive Disorder, Major / psychology*
  • Epigenomics*
  • Evaluation Studies as Topic
  • Humans
  • Prospective Studies
  • Receptors, Glucocorticoid / genetics*
  • Stress, Psychological / epidemiology
  • Stress, Psychological / genetics
  • Stress, Psychological / psychology*

Substances

  • NR3C1 protein, human
  • Receptors, Glucocorticoid