Response of phosphorus fractionation in lake sediments to anthropogenic activities in China

Sci Total Environ. 2020 Jan 10:699:134242. doi: 10.1016/j.scitotenv.2019.134242. Epub 2019 Sep 2.

Abstract

In this study, geochemical fractionation is used to establish the relationship between sediment phosphorus (P) pools and anthropogenic activities based on the dated sediment from a suite of lakes in China. Our extraction results showed that the inorganic P fractions, including Ca-P (46% of TP) and Fe/Al-P (24%), constitute most of the P in sediments. Soil erosion dynamics and geographic location are the dominant factors controlling the historical distribution and partitioning of Ca-P in sediments, while over the last few decades, industrial and domestic effluents were the leading factor controlling Fe/Al-P. The organic P (Po) fractions, NaHCO3-Po, HCl-Po, and Ful-Po accounted for only 11%, 16% and 12% of Po on average, respectively, whereas Hum-Po and Res-Po made up the dominant Po fraction (59%) and were the main factors controlling Po dynamics due to fertilizer and livestock breeding. Thus, the historical fraction of P in the sediment core can be used as an indicator of anthropogenic activities. Ca-P decreased in the top layers of the cores because of the implementation of the Soil and Water Conservation Law in China since 1991. However, Fe/Al-P and Po continuously increased in the lakes from the economic backward area over the last few decades, which is largely due to enhanced point sources of pollution and an increase in the intensity of agricultural practices. As a potential P source, the massive accumulation of Fe/Al-P and Po would be released into the overlying water to further facilitate eutrophication via increasing pH and alkaline phosphatase and decreasing in the dissolved oxygen concentration. Therefore, in order to control eutrophication more effectively and efficiently, it is essential that the accumulation of sediment Fe/Al-P and Po be decreased immediately and domestic wastewater, poultry excreta, and fertilizer loss must be more carefully controlled, especially in economically backward areas.

Keywords: Anthropogenic tracers; Eutrophication risk; Phosphorus; Sediment core.