Inhibition of microRNA-711 limits angiopoietin-1 and Akt changes, tissue damage, and motor dysfunction after contusive spinal cord injury in mice

Cell Death Dis. 2019 Nov 4;10(11):839. doi: 10.1038/s41419-019-2079-y.

Abstract

Spinal cord injury (SCI) causes neuronal cell death and vascular damage, which contribute to neurological dysfunction. Given that many biochemical changes contribute to such secondary injury, treatment approaches have increasingly focused on combined therapies or use of multi-functional drugs. MicroRNAs (miRs) are small (20-23 nucleotide), non-protein-coding RNAs and can negatively regulate target gene expression at the post-transcriptional level. As individual miRs can potentially modulate expression of multiple relevant proteins after injury, they are attractive candidates as upstream regulators of the secondary SCI progression. In the present study we examined the role of miR-711 modulation after SCI. Levels of miR-711 were increased in injured spinal cord early after SCI, accompanied by rapid downregulation of its target angiopoietin-1 (Ang-1), an endothelial growth factor. Changes of miR-711 were also associated with downregulation of the pro-survival protein Akt (protein kinase B), another target of miR-711, with sequential activation of glycogen synthase kinase 3 and the pro-apoptotic BH3-only molecule PUMA. Central administration of a miR-711 hairpin inhibitor after SCI limited decreases of Ang-1/Akt expression and attenuated apoptotic pathways. Such treatment also reduced neuronal/axonal damage, protected microvasculature and improved motor dysfunction following SCI. In vitro, miR-711 levels were rapidly elevated by neuronal insults, but not by activated microglia and astrocytes. Together, our data suggest that post-traumatic miR-711 elevation contributes to neuronal cell death after SCI, in part by inhibiting Ang-1 and Akt pathways, and may serve as a novel therapeutic target.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiopoietin-1 / metabolism*
  • Animals
  • Contusions / metabolism*
  • Contusions / pathology
  • Mice
  • MicroRNAs / antagonists & inhibitors
  • MicroRNAs / metabolism*
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Signal Transduction*
  • Spinal Cord Injuries / metabolism*
  • Spinal Cord Injuries / pathology

Substances

  • Angiopoietin-1
  • Angpt1 protein, mouse
  • MIRN711 microRNA, mouse
  • MicroRNAs
  • Proto-Oncogene Proteins c-akt