Coherent population trapping based atomic reservoir for almost perfect higher-order squeezing

Opt Express. 2019 Oct 14;27(21):30530-30551. doi: 10.1364/OE.27.030530.

Abstract

Due to either coherent or dissipative interactions with the coherent population trapping (CPT)-based atoms, the evolutions of the Bogoliubov modes towards the vacuum states have been shown to lead to second-order squeezing of the involved optical fields. Here we push the CPT-based dissipative interactions towards higher-order squeezing, which is not simply determined by second-order squeezing but instead by different criteria involving higher-order moments. It is shown that the CPT-based atomic reservoir supports the dissipative evolution of the Bogoliubov modes almost completely to the vacuum states and then yields almost perfect fourth-order squeezing (90%∼100%). The present mechanism is robust against spontaneous emission since the atoms stay largely in the ground states. As a by-product, a comparison is given with two-level atoms, in which the excitation of a large fraction reduces the degree of higher-order squeezing.