Micellization of Pluronic P123 in Water/Ethanol/Turpentine Oil Mixed Solvents: Hybrid Particle-Field Molecular Dynamic Simulation

Polymers (Basel). 2019 Nov 3;11(11):1806. doi: 10.3390/polym11111806.

Abstract

The hybrid particle-field molecular dynamics simulation method (MD-SCF) was applied to study the self-assembly of Pluronic PEO20-PPO70-PEO20 (P123) in water/ethanol/turpentine oil- mixed solvents. In particular, the micellization process of P123 at low concentration (less than 20%) in water/ethanol/turpentine oil-mixed solvents was investigated. The aggregation number, radius of gyration, and radial density profiles were calculated and compared with experimental data to characterize the structures of the micelles self-assembled from P123 in the mixed solvent. This study confirms that the larger-sized micelles are formed in the presence of ethanol, in addition to the turpentine oil-swollen micelles. Furthermore, the spherical micelles and vesicles were both observed in the self-assembly of P123 in the water/ethanol/turpentine oil-mixed solvent. The results of this work aid the understanding of the influence of ethanol and oil on P123 micellization, which will help with the design of effective copolymer-based formulations.

Keywords: P123; block copolymer; ethanol; hybrid particle–field molecular dynamics; self-assembly; turpentine oil.