Electrical Stimulation in the Claustrum Area Induces a Deepening of Isoflurane Anesthesia in Rat

Brain Sci. 2019 Nov 1;9(11):304. doi: 10.3390/brainsci9110304.

Abstract

The role of the claustrum in consciousness and vigilance states was proposed more than two decades ago; however, its role in anesthesia is not yet understood, and this requires more investigation. The aim of our study was to assess the impact of claustrum electrical stimulation during isoflurane anesthesia in adult rats. The claustrum in the left hemisphere was electrically stimulated using a bipolar tungsten electrode inserted stereotaxically. In order to monitor the anesthetic depth, the electrocorticogram (ECoG) was recorded before, during, and after claustrum stimulation using frontal and parietal epidural electrodes placed over the left hemisphere. After reaching stabilized slow-wave isoflurane anesthesia, twenty stimuli, each of one second duration with ten seconds interstimulus duration, were applied. ECoG analysis has shown that, after a delay from the beginning of stimulation, the slow-wave ECoG signal changed to a transient burst suppression (BS) pattern. Our results show that electrical stimulation of the claustrum area during slow-wave isoflurane anesthesia induces a transitory increase in anesthetic depth, documented by the appearance of a BS ECoG pattern, and suggests a potential role of claustrum in anesthesia.

Keywords: anesthesia; burst suppression; claustrum; electrical stimulation; isoflurane.