In Vitro Simulation and In Vivo Assessment of Tooth Wear: A Meta-Analysis of In Vitro and Clinical Research

Materials (Basel). 2019 Oct 31;12(21):3575. doi: 10.3390/ma12213575.

Abstract

Tooth wear may be described as a side-effect of occlusal forces that may be further induced by the common use of contemporary prosthetic materials in practice. The purpose of this systematic review was to appraise existing evidence on enamel wear from both in vitro and clinical research and explore whether evidence from these study designs lies on the same direction. Five databases of published and unpublished research were searched without limitations in August 2019 and study selection criteria included in vitro and clinical research on enamel tooth wear. Study selection, data extraction, and risk of bias assessment were done independently and in duplicate. Random effects meta-analyses of standardized mean differences (SMDs) or weighted mean differences (WMDs) with 95% confidence intervals (CIs) were conducted while a Monte Carlo permutation test for meta-regression on the exploration of the effect of the study design on the reported outcomes was planned. A total of 27 studies (23 in vitro and 4 clinical) were eligible while 12 contributed to meta-analyses. Overall, some concerns were raised for the quality of the existing evidence and the potential for risk of bias. Enamel wear (mm) of antagonist teeth was more pronounced when opposed to conventional porcelain compared to machinable ceramics (SMD = 2.18; 95%CIs: 1.34, 3.02; p < 0.001). Polished zirconia resulted in decreased volumetric enamel wear (mm3) of opposing teeth compared to pure natural enamel (SMD = -1.06; 95%CIs: -1.73, -0.39; p = 0.002). Monolithic zirconia showed evidence of enhanced potential for antagonist wear (μm) compared to natural teeth (WMD = 107.38; 95%CIs: 30.46, 184.30; p = 0.01). Study design did not reveal an effect on the tooth wear outcome for the latter comparison when both clinical and in vitro studies were considered (three studies; Monte Carlo test, p = 0.66). In conclusion, there is an overriding need for additional evidence from clinical research to substantiate the findings from the already existing laboratory simulation studies.

Keywords: ceramic; composite; enamel wear; in vitro wear simulation; lithium disilicate; meta-analysis; porcelain; systematic review; tooth loading; tooth wear; zirconia.

Publication types

  • Review