Long-lasting modifications of motoneuron firing properties by trans-spinal direct current stimulation in rats

Eur J Neurosci. 2020 Apr;51(8):1743-1755. doi: 10.1111/ejn.14612. Epub 2019 Nov 24.

Abstract

Trans-spinal direct current stimulation (tsDCS) is a novel neuromodulatory technique that has been used during neurological rehabilitation and sports to modulate muscle activation. However, the physiological mechanisms that underly the long-lasting functional effects of polarization are not yet fully understood, nor are their relationships with specific neuronal populations. The acute facilitatory and depressive effects of anodal and cathodal polarization on motoneurons have been recently demonstrated, and the aim of this study was to determine whether tsDCS-evoked modulations of motoneuron properties are able to persist over several hours. Intracellular recordings from multiple antidromically identified rat motoneurons were performed both before and after the application of tsDCS (0.1 mA for 15 min), at various time points up to 180 min after the offset of anodal or cathodal tsDCS. The examined effects of anodal polarization included decreased rheobase, voltage threshold, the minimum and maximum currents necessary for rhythmic firing, increased rhythmic firing frequencies and the slope of the f-I relationship. The majority of these facilitatory changes to threshold and firing properties were sustained for 30-60 min after polarization. In contrast, the significant effects of cathodal polarization were absent, except the short-lasting decreased ability for motoneurons to induce rhythmic activity. This study provides direct evidence that a single polarization session can alter the electrophysiological properties of motoneurons for at least one hour and provides a basis for the further use of tsDCS techniques under conditions where the sustained modification of motoneuron firing is desired.

Keywords: polarization; spinal cord; steady-state firing; tsDCS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Electricity*
  • Electrodes
  • Motor Neurons*
  • Rats
  • Spinal Cord