Recyclable coherent random lasers assisted by plasmonic nanoparticles in DCM-PVA thin films

Opt Express. 2019 Sep 16;27(19):27103-27111. doi: 10.1364/OE.27.027103.

Abstract

Recyclable coherent random lasers assisted by plasmonic nanoparticles in DCM-PVA thin films are studied. Four DCM-PVA films with different nanoparticles are made, and the radiation characteristics of these random lasers are studied. The results show that the emission spectrum of the DCM-PVA film with Au nanoparticle of 50 nm in diameter is optimal, and its threshold is about 6.53 µJ/pulse. Underlying mechanisms are discussed in detail. Then the DCM-PVA film with Au nanoparticles of 50 nm in diameter is detached from a glass substrate and adhered to different substrates. Coherent random lasers also occur when the sample is based on different substrates. Finally, a method of making samples recyclable is proposed, and the emission spectrum of samples as a function of cycle index is studied. The results show that recyclable coherent random lasers can be realized with this method. This study provides a new way, to the best of our knowledge, to realize recyclable coherent random lasers with low-threshold.