Tuning fluorophore excitation in a total-internal-reflection-fluorescence microscopy

Appl Opt. 2019 Oct 10;58(29):8055-8060. doi: 10.1364/AO.58.008055.

Abstract

In a total-internal-reflection-fluorescence-microscopy method, there is anisotropy in the polarized evanescent wave. Since the evanescent wave is used as an excitation field, the mentioned anisotropy is a disadvantage in using the total-internal-reflection-fluorescence-microscopy technique. Therefore, by theoretical and analytical approaches, and based on the Fresnel coefficients, the effect of three dielectrics media on the anisotropy of the evanescent wave is investigated. Following that, a proper combination of the cover glass, oil immersion, and prism for both living and non-living samples is suggested that not only enhances the intensity of the evanescent wave, but also and importantly, decreases the essential anisotropy of the evanescent wave.