The role of adrenal derived androgens in castration resistant prostate cancer

J Steroid Biochem Mol Biol. 2020 Mar:197:105506. doi: 10.1016/j.jsbmb.2019.105506. Epub 2019 Oct 28.

Abstract

Castration resistant prostate cancer (CRPC) remains androgen dependant despite castrate levels of circulating testosterone following androgen deprivation therapy, the first line of treatment for advanced metstatic prostate cancer. CRPC is characterized by alterations in the expression levels of steroidgenic enzymes that enable the tumour to derive potent androgens from circulating adrenal androgen precursors. Intratumoral androgen biosynthesis leads to the localized production of both canonical androgens such as 5α-dihydrotestosterone (DHT) as well as less well characterized 11-oxygenated androgens, which until recently have been overlooked in the context of CRPC. In this review we discuss the contribution of both canonical and 11-oxygenated androgen precursors to the intratumoral androgen pool in CRPC. We present evidence that CRPC remains androgen dependent and discuss the alterations in steroidogenic enzyme expression and how these affect the various pathways to intratumoral androgen biosynthesis. Finally we summarize the current treatment strategies for targeting adrenal derived androgen biosynthesis.

Keywords: 11-ketotestosterone; 11-oxygenated androgens; 11β-hydroxyandrostenedione; Adrenal androgen precursors; Prostate cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Androgen Antagonists / therapeutic use*
  • Androgens / metabolism*
  • Humans
  • Male
  • Prostatic Neoplasms, Castration-Resistant / drug therapy
  • Prostatic Neoplasms, Castration-Resistant / metabolism*
  • Prostatic Neoplasms, Castration-Resistant / pathology*

Substances

  • Androgen Antagonists
  • Androgens