Maternally-Derived Antibodies Protect against Challenge with Highly Pathogenic Avian Influenza Virus of the H7N3 Subtype

Vaccines (Basel). 2019 Oct 30;7(4):163. doi: 10.3390/vaccines7040163.

Abstract

Vaccination of hens against influenza leads to the transfer of protective maternally-derived antibodies (MDA) to hatchlings. However, little is known about the transfer of H7N3 vaccine-induced MDA. Here, we evaluated transfer, duration, and protective effect of MDA in chickens against H7N3 HPAIV. To generate chickens with MDA (MDA (+)), 15-week-old White Leghorn hens were vaccinated and boosted twice with an inactivated H7N3 low pathogenic avian influenza virus vaccine, adjuvanted with Montanide ISA 71 VG. One week after the final boost, eggs were hatched. Eggs from non-vaccinated hens were hatched for chickens without MDA (MDA (-)). Both MDA (+) and MDA (-) hatchlings were monitored weekly for antibody levels. Anti-HA MDA were detected by hemagglutination inhibition assay mostly until day 7 post-hatch. However, anti-nucleoprotein MDA were still detected three weeks post-hatch. Three weeks post-hatch, chickens were challenged with 106 EID50/bird of Mexican-origin H7N3 HPAIV. Interestingly, while 0% of the MDA (-) chickens survived the challenge, 95% of the MDA (+) chickens survived. Furthermore, virus shedding was significantly reduced by day 5 post-challenge in the MDA (+) group. In conclusion, MDA confers partial protection against mortality upon challenge with H7N3 HPAIV, as far as three weeks post-hatch, even in the absence of detectable anti-HA antibodies, and reduce virus shedding after challenge.

Keywords: H7N3; highly pathogenic avian influenza virus; maternally-derived antibodies; protection; vaccination of chickens.