Friction Weldability of a High Nb Containing TiAl Alloy

Materials (Basel). 2019 Oct 30;12(21):3556. doi: 10.3390/ma12213556.

Abstract

The friction weldability of Ti-45Al-8.5Nb-0.2W-0.2B-0.02Y alloy has been investigated by optimizing process parameters and analyzing the microstructures and tensile properties of the joints. The as-cast alloy with a nearly lamellar (NL) microstructure and the as-forged alloys with a duplex (DP) microstructure have been successfully welded. All the joints have a severe deformation zone (SDZ) and a transition zone (TZ) between the parent metal (PM) and SDZ. SDZ, showing a biconcave lens geometry, has a maximum thickness of hundreds of micrometers at the periphery. TZ is hundreds of micrometers thick. All SDZs have a fine-grained DP microstructure with a grain size of a few micrometers. For the joint of the as-cast alloy, the TZ consists of deformed lamellar colonies as the major constituent and partially recrystallized grains as the minor constituent. For the joint of the as-forged alloy, the TZ is similar to both the PM and SDZ, showing a DP microstructure. The grain size, volume fraction of γ grains, and the remnant lamellar colonies all increase with the distance from the SDZ. All joints presented perfect metallurgical bonding. The strengths of the joints are higher than those of the corresponding PMs. This indicates that the studied alloy has good friction weldability.

Keywords: friction welding; high Nb containing TiAl; microstructure; recrystallization; tensile properties.