Data in brief on inter-row rainwater harvest and fertilizer application on yield of maize and pigeon-pea cropping systems in sub humid tropics

Data Brief. 2019 Aug 30:26:104456. doi: 10.1016/j.dib.2019.104456. eCollection 2019 Oct.

Abstract

Soil moisture management and fertilizer micro-dosing on yield and land utilization efficiency of inter-cropping maize-pigeon-pea in sub humid Tanzania [1]. Farmers typically grow pigeon-pea as a mixed cropping system, the advances of these systems have been well studied, for example: increased productivity and rainfall infiltration. Much research has been done on cereal-pigeon pea intercropping on research stations, comparing yields in intercrops with sole maize. However, the role of inorganic fertilizers in sustainably intensifying intercropping systems has not been optimalised in all cases. For example in a recent study "Sustainable Intensification with Cereal-Legume Intercropping in Eastern and Southern Africa" published in Sustainability 2019, 11, 2891; https://doi.org/10.3390/su11102891, also the effect of inorganic fertilizers were studied. But usually these studies did not pay attention on the relation with water supply. Data in this article presents rainfall variability in the season and between seasons, yield of maize (Zea mays cv. TMV1) and pigeon-pea (Cajanus cajan cv. Babati White) under sole crop and intercropping. Yield of maize and pigeon-pea is analyzed under inter-row rainwater harvesting practices and fertilizer application in the field. Sole cropping and intercropping biological and/or economic yield are used to determine land use efficiency through land equivalent ratio. Comparisons between sites and seasons are done using a T-test.