RNA-dependent Amplification of Mammalian mRNA Encoding Extracellullar Matrix Proteins: Identification of Chimeric RNA Intermediates for α1, β1, and γ1 Chains of Laminin

Ann Integr Mol Med. 2019;1(1):48-60. Epub 2019 Aug 25.

Abstract

De novo production of RNA on RNA template, a process known as RNA-dependent RNA synthesis, RdRs, and the enzymatic activity conducting it, RNA-dependent RNA polymerase, RdRp, were initially considered to be exclusively virus-specific. Eventually, however, the occurrence of RdRs and the ubiquitous presence of conventional RdRp were demonstrated in numerous eukaryotic organisms. The evidence that the enzymatic machinery capable of RdRs is present in mammalian cells was derived from studies of viruses, such as hepatitis delta virus, HDV, that do not encode RdRp yet undergo a robust RNA replication once inside the mammalian host; thus firmly establishing its occurrence and functionality. Moreover, it became clear that RdRp activity, apparently in a non-conventional form, is constitutively present in most, if not in all, mammalian cells. Because such activity was shown to produce short transcripts, given its apparent involvement in RNA interference phenomena, and because double-stranded RNA is known to trigger cellular responses leading to its degradation, it was generally assumed that its role in mammalian cells is restricted to a regulatory function. However, at the same time, an enzymatic activity capable of generating complete antisense RNA complements of mRNAs was discovered in mammalian cells undergoing terminal differentiation. Moreover, observations of widespread synthesis of antisense RNAs initiating at the 3'poly(A) of mRNAs in human cells suggested an extensive cellular utilization of mammalian RdRp. These results led to the development of a model of RdRp-facilitated and antisense RNA-mediated amplification of mammalian mRNA. Recent detection of the major model-predicted identifiers, chimeric RNA intermediates containing both sense and antisense RNA strands covalently joined in a rigorously predicted and uniquely defined manner, as well as the identification of a putative chimeric RNA end product of this process, validated the proposed model. The results corroborating mammalian RNA-dependent mRNA amplification were obtained in vivo with cells undergoing terminal erythroid differentiation and programmed for only a short survival span. This raises a question of whether mammalian RNA-dependent mRNA amplification is a specialized occurrence limited to extreme circumstances of terminal differentiation or a general physiological phenomenon. The present study addresses this question by testing for the occurrence of RNA-dependent amplification of mRNA encoding extracellular matrix proteins abundantly produced throughout the tissue and organ development and homeostasis, an exceptionally revealing indicator of the range and scope of this phenomenon. We report here the detection of major identifiers of RNA-dependent amplification of mRNA encoding α1, β1, and γ1 chains of laminin in mouse tissues producing large quantities of extracellular matrix proteins. The results obtained warrant reinterpretation of the mechanisms involved in ubiquitous and abundant production and deposition of extracellular matrix proteins, confirm the occurrence of mammalian RNA-dependent mRNA amplification as a new mode of genomic protein-encoding information transfer, and establish it as a general physiological phenomenon.

Keywords: Antisense-strand RNA; Chimeric RNA intermediate; RNA-dependent RNA polymerase; RNA-dependent amplification of mammalian mRNA; Self-priming; Sensestrand RNA.