Accelerated solar steam generation for efficient ions removal

J Colloid Interface Sci. 2020 Feb 15:560:103-110. doi: 10.1016/j.jcis.2019.10.055. Epub 2019 Oct 16.

Abstract

Solar-driven evaporation as a sustainable water purification technology exhibits great potential in solving the global water crisis. In this paper, a novel solar evaporator was successfully prepared with the reduced graphene oxide (rGO) and silver (Ag) nanowires as photothermal conversion media which were loaded into the sodium alginate (SA) hydrogel. It was found that the evaporation rate of the prepared evaporator reached 2.02 kg m-2 h-1 and the solar energy efficiency was 91% under one sun irradiation intensity. Furthermore, this novel solar evaporator exhibited expectant evaporation performance in the treatment of seawater and heavy metal sewage with excellent ion removal ability, with the removal efficiency of various ions higher than 99.9%. The ion-crosslinked SA hydrogel contained in the evaporator ensured the rejection of multivalentions based on the distribution of carboxylate anions, and the three-dimensional porous channel of the super-hydrophilic hydrogel provided the convenient path for the transport of water molecules and the escape of water vapor. The binary composition of rGO and silver nanowires enhanced the photothermal conversion and the thermal conductivity, which was beneficial to the stable supply of thermal energy for evaporation. The purpose of this paper is to provide reference for promoting the practical application of solar evaporation.

Keywords: Heavy metal ion; Ionic hydrogel; Self-driven; Solar evaporation.