A workflow for patient-specific fluid-structure interaction analysis of the mitral valve: A proof of concept on a mitral regurgitation case

Med Eng Phys. 2019 Dec:74:153-161. doi: 10.1016/j.medengphy.2019.09.020. Epub 2019 Oct 22.

Abstract

The mechanics of the mitral valve (MV) are the result of the interaction of different anatomical structures complexly arranged within the left heart (LH), with the blood flow. MV structure abnormalities might cause valve regurgitation which in turn can lead to heart failure. Patient-specific computational models of the MV could provide a personalised understanding of MV mechanics, dysfunctions and possible interventions. In this study, we propose a semi-automatic pipeline for MV modelling based on the integration of state-of-the-art medical imaging, i.e. cardiac magnetic resonance (CMR) and 3D transoesophageal-echocardiogram (TOE) with fluid-structure interaction (FSI) simulations. An FSI model of a patient with MV regurgitation was implemented using the finite element (FE) method and smoothed particle hydrodynamics (SPH). Our study showed the feasibility of combining image information and computer simulations to reproduce patient-specific MV mechanics as seen on medical images, and the potential for efficient in-silico studies of MV disease, personalised treatments and device design.

Keywords: 3D transoesophageal-echocardiogram; Cardiac magnetic resonance; Fluid-structure interaction simulations; Left heart; Mitral valve; Patient-specific modelling; Smoothed particles hydrodynamics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrocardiography
  • Finite Element Analysis
  • Hemodynamics*
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Mitral Valve / diagnostic imaging
  • Mitral Valve / physiopathology*
  • Mitral Valve Insufficiency / diagnostic imaging
  • Mitral Valve Insufficiency / physiopathology*
  • Patient-Specific Modeling*
  • Workflow*