3D Cultures of Salivary Gland Cells in Native or Gelled Egg Yolk Plasma, Combined with Egg White and 3D-Printing of Gelled Egg Yolk Plasma

Materials (Basel). 2019 Oct 24;12(21):3480. doi: 10.3390/ma12213480.

Abstract

For salivary gland (SG) tissue engineering, we cultured acinar NS-SV-AC cell line or primary SG fibroblasts for 14 days in avian egg yolk plasma (EYP). Media or egg white (EW) supplemented the cultures as they grew in 3D-Cryo histology well inserts. In the second half of this manuscript, we measured EYP's freeze-thaw gelation and freeze-thaw induced gelled EYP (GEYP), and designed and tested further GEYP tissue engineering applications. With a 3D-Cryo well insert, we tested GEYP as a structural support for 3D cell culture or as a bio-ink for 3D-Bioprinting fluorescent cells. In non-printed EYP + EW or GEYP + EW cultures, sagittal sections of the cultures showed cells remaining above the well's base. Ki-67 expression was lacking for fibroblasts, contrasting NS-SV-AC's constant expression. Rheological viscoelastic measurements of GEYP at 37 °C on seven different freezing periods showed constant increase from 0 in mean storage and loss moduli, to 320 Pa and 120 Pa, respectively, after 30 days. We successfully 3D-printed GEYP with controlled geometries. We manually extruded GEYP bio-ink with fluorescence cells into a 3D-Cryo well insert and showed cell positioning. The 3D-Cryo well inserts reveal information on cells in EYP and we demonstrated GEYP cell culture and 3D-printing applications.

Keywords: 3D-Bioprinting; 3D-Cryo well insert; 3D-Printing; Ki-67; cell culture; egg white; egg yolk plasma; gel; histology; rheology; salivary glands; tissue engineering.