Characteristics of Carbapenem-Resistant and Colistin-Resistant Escherichia coli Co-Producing NDM-1 and MCR-1 from Pig Farms in China

Microorganisms. 2019 Oct 23;7(11):482. doi: 10.3390/microorganisms7110482.

Abstract

The emergence of carbapenem-resistant and colistin-resistant Enterobacteriaceae represents a great risk for public health. In this study, the phenotypical and genetic characteristics of eight carbapenem-resistant and colistin-resistant isolates from pig farms in China were determined by the broth microdilution method and whole genome sequencing. Antimicrobial susceptibility testing showed that the eight carbapenem-resistant and colistin-resistant strains were resistant to three aminoglycosides, twelve β-lactams, one of the phenicols, one of the tetracyclines, and one of the fluoroquinolones tested, simultaneously. The prediction of acquired resistant genes using the whole genome sequences revealed the co-existence of blaNDM-1 and mcr-1 as well as the other genes that were responsible for the multidrug-resistant phenotypes. Bioinformatics analysis also showed that the carbapenem-resistant gene blaNDM-1 was located on a putative IncFII-type plasmid, which also carried the other acquired resistant genes identified, including fosA3, blaTEM-1B and rmtB, while the colistin-resistant gene mcr-1 was carried by a putative IncX4-type plasmid. Finally, we found that these resistant genes/plasmids were conjugative, and they could be co-conjugated, conferring resistance to multiple types of antibiotics, including the carbapenems and colistin, to the recipient Escherichia coli strains.

Keywords: Escherichia coli; blaNDM-1; carbapenem-resistance; co-existence; colistin-resistance; mcr-1; plasmid.